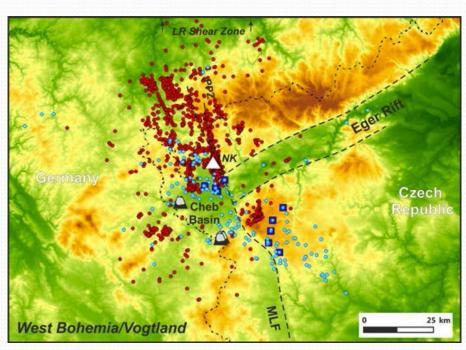
Local seismic networks WEBNET and REYKJANET – the tools to understanding of the W-Bohemian and SW-Icelandic earthquake swarms

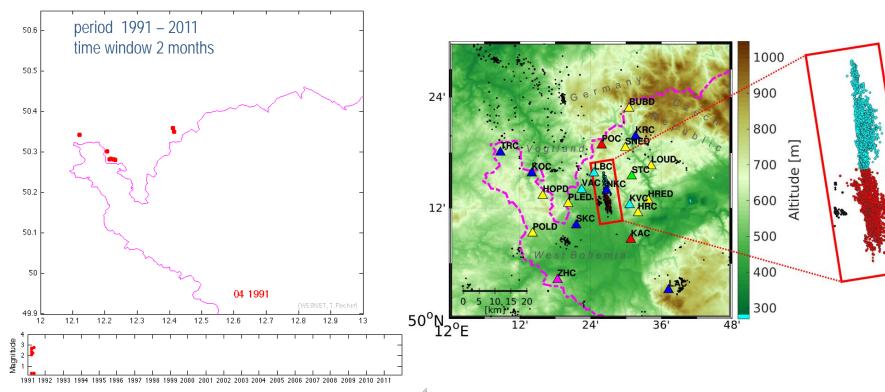
in cooperation of

Institute of Geophysics and Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Rep.

Josef Horálek and WEBNET Group

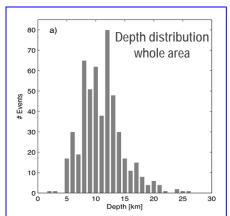

Why WEBNET?

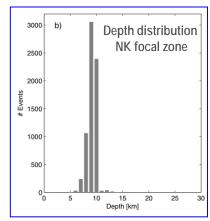
(West Bohemia Network)


- W-Bohemia/Vogtland (Lat: ≈ 49.8°N to 50.7°N, Long: ≈12°E to 13°E) an intraplate geodynamically active area
- earthquake swarms specific type of seismicity sequences of seismic events closely clustered in space and time, without a single outstanding earthquake

The origin of earthquake swarms still unclear.

Space-time distribution of the W-Bohemia/Vogtland earthquake swarms

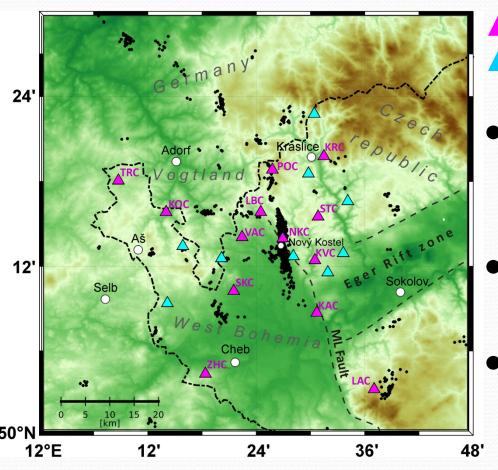



Swarm-like seismicity scattered in the area $\approx 40 \times 60 \text{ km but } \approx 95\%$ of seismic moment released in the Nový Kostel (NK) focal zone.

Focal depth:

- 5 22 km in the whole area,
- 7 13 km in the NK zone.

However, focal depths between 7 and 10 km prevail in the whole area.



Basic characteristics of significant WB/V seismicity

	Duration [days]	Total number of ev.	Number of located ev. (NLLoc)	Characteristics	ML_{max}
1985/86	70	8000 ML>0.5	-	swarm	4.6
1997	20	1 800	1 150	swarm	3.0
2000	125	25 000	3 170	swarm	3.2
2008	70	25 000	3 880	swarm	3.8
2011	120	> 25 000	4 160	swarm	3.7
2013	20	1 500	200	mini-swarm	2.5
2014	14	4 000	800	3 mainshock- aftershocks sequences	3.6 4·4 3·5
background: 1997-2014	-	8000	6 200		2.0

Distribution an parameters of the WEBNET stations

- BB networked stations
- SP autonomous stations
- WEBNET:12 BB networked and10 SP autonomous 3C stations
- records proportional to the ground velocity
- frequency band:0.03-80 Hz for the BB stations1.0-80 Hz for the SP stations

sampling rate: 250 Hz.

Area covered by stations ≈ 900 km²

WEBNET - instrumentation and data

BB stations:

Sensors: Güralp CMG3-ESP, $T_0 = 30$ s, $f_{LP} = 100$ Hz

Data acquisition systems: Centaur by Nanometrics

Connected to Internet by WaveLan and/or satellite telemetry

SP stations:

Sensors: Lennartz LE3-D, $T_0 = 1$ s, $f_{LP} = 80$ Hz,

Data acquisition systems: Gaia II, by Vistec (domestic provenience)

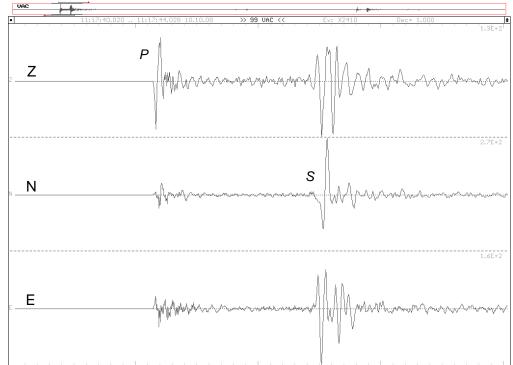
Recording media: SD cards

data downloaded once in 2 months or if needed

All the stations operated in continuous mode

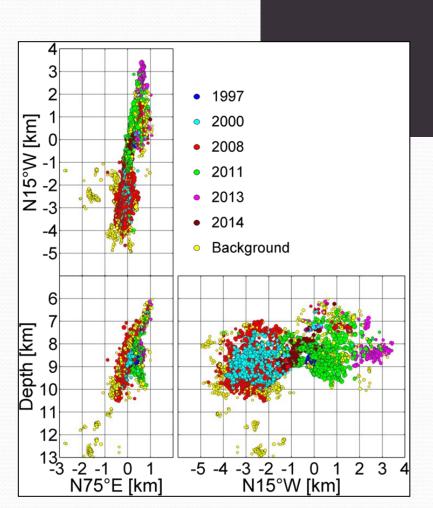
Data format: miniSEED

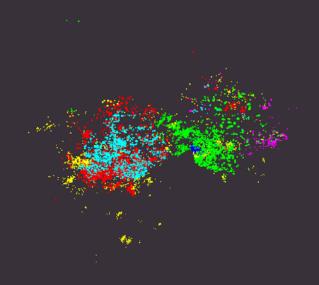
Data stored on data server SILO,


Date access: catalogs available on Internet

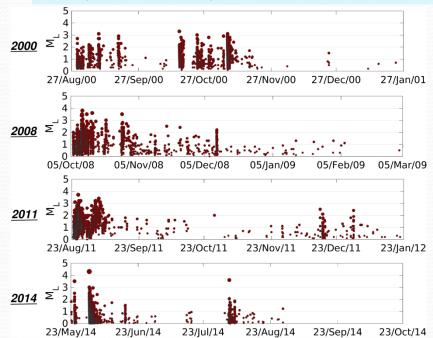
seismograms on reques.

WEBNET stations and typical seismogram



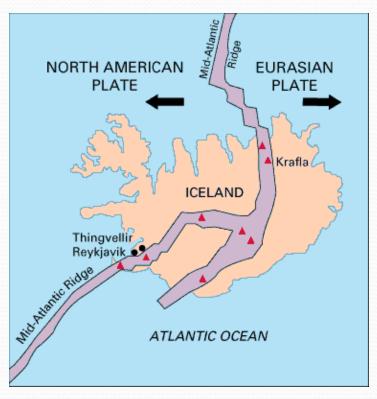


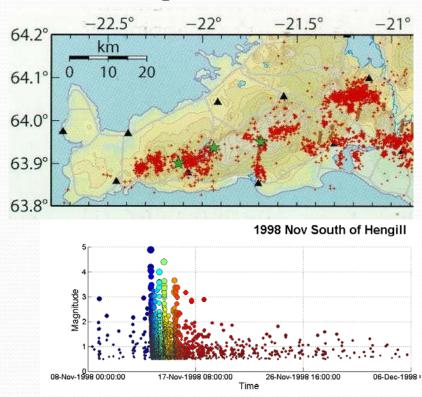
The use of the WEBNET data:


- in about 70 scientific papers published in impacted geophysical journals
- 2 PhD theses defended
- 3 PhD theses in progress
- 5 diploma theses

Spatial distribution of the swarms

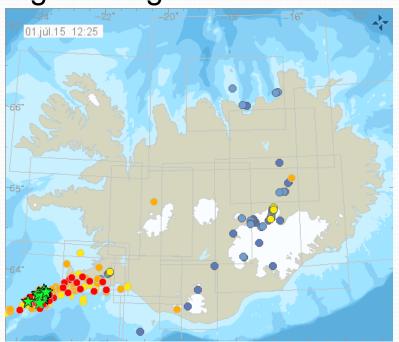
Temporal development of the swarms

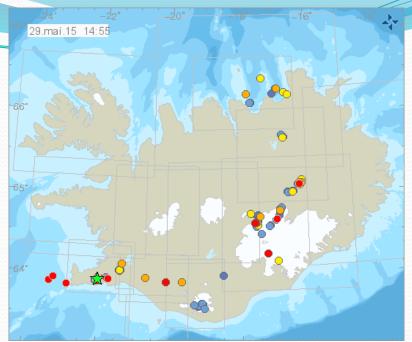


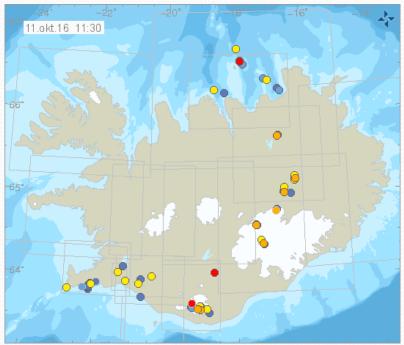

Why REYKJANET?

(Reykjanes Peninsula Network, SW Iceland)

Reykjanes Peninsula: (Lat: ≈ 63.8°N to 64.1°N, Long: ≈21.5°W to 22.3°W)


- onshore continuation of the Reykjanes Ridge which is a part of the mid-Atlantic Ridge
- swarm-like seismicity at a contact of lithospheric plates earthquake swarms up to magnitude $M_L = 5 + 1$ Iceland





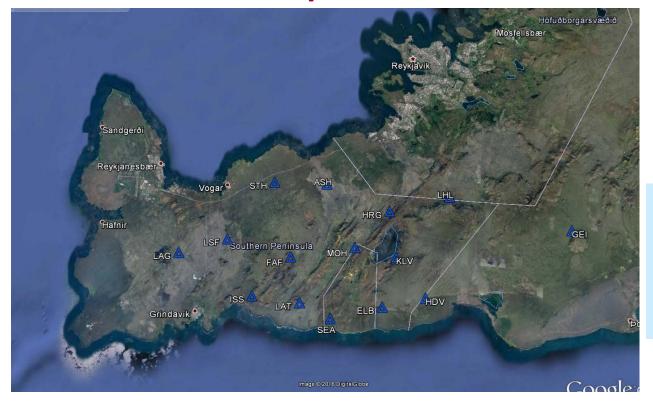
Iceland - the mid-Atlantic ridge exposed above sea level. It is one of only a few places on the Earth where an oceanic spreading centre rises above sea level.

Seismic activity concentrated along the ridge

Basic characteristics of the Reykjanes Peninsula, SW Iceland

- Plate motion rate ≈ 20 mm/year in E-W and ≈ 5 mm/year in N-S.
- Interaction between volcanic and tectonic activity.
- Most of the Reykjanes Peninsula surface covered by lava.
- The largest recent swarms: Mw = 5.9 in 2000, Mw = 5.3 in 2003, Mw = 5.0 in 2013.
- At the present time the seismicity is of diffused character along the plate boundary.
- High fluid activity many fumaroles and geothermal systems
- Brittle/ductile transition at about 7 km depth, temperature of at least 650°C.
- Magmatic activity occurred at intervals ≈ 1000 years;
 the latest eruptive period ended in 1240 AD.

Typical relief of the Reykjanes Peninsula



Distribution an parameters of the REYKJANET stations

Built up: September 2013

Area covered by the REYKJANET stations: ≈ 60 km x 20 km

- 14 BB and 1 SP autonomous 3C stations
- records proportional to the ground velocity
- frequency band: 0.03-80/50 Hz for the BB stations
 1.0-80 Hz for the SP station
- sampling rate: 250 Hz.

REYKJANET - instrumentation and data

14 BB stations:

Sensors: Güralp CMG 40-T, $T_0 = 30s$, $f_{LP} = 100/50$ Hz

1 SP station:

Sensor: Lennartz LE3-D, $T_0 = 1$ s, $f_{LP} = 80$ Hz

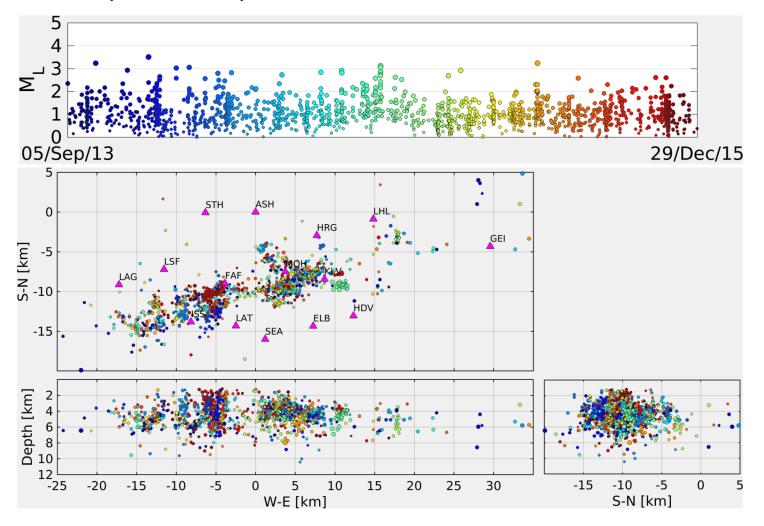
Infra-sonic sensors at 7 stations: micro-barographs ≈ 0 – 25 Hz

Data acquisition systems: Gaia I, III, by Vistec (domestic provenience)

Recording media: SD cards, data downloaded once in 3 months

All the stations operated in continuous mode

Power supply: solar panels – air turbine


Data format: miniSEED

Data stored on data server SILO

Date access: seismograms on request

Expert and technical support: Iceland GeoSurvey - ÍSOR Icelandic Meteorological Office - IMO

Space-time distribution of seismicity on the Reykjanes Peninsula, period September 2013 – December 2015

Diffused "swarm-like" seismicity along the rift, $M_{Lmax} = 3.6$

REYKJANET station KLV

