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Neural network

arti�cial neural networks has been inspired by biological neural
networks

acts as an interface between the organism and environment,
reacts to inner and outer stimuli

sensors (=receptors), information is spread through the
network to e�ectors (muscles, glands)

in cerebral cortex 15-33 billion neurons, each neuron connected
to up to 5000 other neurons
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Anatomy of a neuron

body, dendrites (inputs), axon and synaptic terminals (outputs)

synaptic weight between dendrite and axon (inhibition or
excitation)

synapsis can be build (learning) or disconnected (forgetting)

neuron generates an electrical impulse if the activity of
dendrites is strong enough (information propagates)
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Arti�cial neuron

n real inputs x = dendrites, threshold
input x0 = 1

weights w = synaptic weights, bias
w0 =−h threshold

activation function V = g

(
n

∑
i=0

wixi

)
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SLRNN - architecture

8 neurons, 18 inputs, 3 outputs
(event, P-wave, S-wave)

delay 1, 2, 4, and 8 samples

each neuron 18+(4x8)+1=51 inputs

8x51=408 weights to adjust
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supervised learning: adjusting weights wij to get the best �t
with desired output

we de�ne the desired outputs for training data
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Training of the SLRNN

Training data

earthquake swarm 2008 (events-positive examples) and year
2010 (disturbances-negative examples)

events: di�erent magnitudes, locations, focal mechanisms

disturbances: quarry blasts, regional or teleseismic events,
wind, storms
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Sensitivity and speci�city

sensitivity (true positive rate TPR) - TPR= TP
TP+FN

=identi�ed
events / all events

speci�city (true negative rate TNR) - TNR= TN
TN+FP

=rejected
disturbances / all disturbances

ROC (Receiver operation characteristic) - a relation between
the sensitivity and the speci�city
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ROC diagram
joint training
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ROC diagram
individual training

J. Doubravová and J. Horálek Neural network-based seismic event detector:



Motivation
Arti�cial neural networks - basics

Data and method
Training results

Application to Reykjanet
Conclusion

False detection

blind test on data from 2011, single station detection only

false detections are often weak events

but many detections could not be veri�ed
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Undetected events - examples
events ML = 2,3 and ML = 2,2 hidden in the coda of ML = 3,8

J. Doubravová and J. Horálek Neural network-based seismic event detector:



Motivation
Arti�cial neural networks - basics

Data and method
Training results

Application to Reykjanet
Conclusion

Undetected events - examples
undetected event ML =−0,3 on station with high noise

J. Doubravová and J. Horálek Neural network-based seismic event detector:



Motivation
Arti�cial neural networks - basics

Data and method
Training results

Application to Reykjanet
Conclusion

Undetected events - examples
missing detection of event ML = 0,2 on station with low P- and S-wave amplitudes
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Training results

SLRNN architecture is suitable for local event detection

individual training must not be better than joint training

for a good reliability the data throughout the network must be
combined

reject false detections

eliminate undetected events
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Reykjanet network

southwest Iceland, Reykjanes peninsula
15 o�-line broadband stations
network con�guration, number of stations, swarm activity -
similar to WB
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Neural network

the best network of joint training for WEBNET

coincidence implemented

detection on at least 6 stations in a time window (0,8s)
required to de�ne an EVENT
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Selected data: 4 swarms
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Catalogs

SIL - IMO catalog - manually revised automatic locations
Icelandic network

Antelope - automatic catalog by Antelope from Reykjanes
data (B. R·ºek)

PePiN - automatic locations by PePiN (T. Fischer)

ANN - event detections (no locations) using SLRNN trained
for WEBNET

maximum magnitude ML = 2,3
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Number of events
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Comparison of individual events - March 2015

Pepin and SIL sorted by the magnitude

Antelope without magnitudes, sorted in time
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Smallest events
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Conclusion

SLRNN is fast and e�cient algorithm for event detection

in case of consistent readings of P and S phases - individual
training performs better

for missing readings, joint training is helpful

station coincidence solved both problems; undetected events
and false alarm

network trained for West Bohemia works very well for
Reykjanes
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Thank you for your attention !

Sincere thanks to members of Webnet group for providing
data, and to CzechGeo/EPOS for supporting our networks
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