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Motivation

Motivation

e continual data are not suitable for direct manual processing
@ high quality detection needed for

e manual processing, i.e. we need minimum number of false
alarms
e automatic processing - detection of weak events

o artificial neural network can extract useful information

o forward computation of trained network is fast
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Artificial neural networks - basics

Neural network

e artificial neural networks has been inspired by biological neural
networks

@ acts as an interface between the organism and environment,
reacts to inner and outer stimuli

@ sensors (=receptors), information is spread through the
network to effectors (muscles, glands)

@ in cerebral cortex 15-33 billion neurons, each neuron connected
to up to 5000 other neurons
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Artificial neural networks - basics

Anatomy of a neuron

@ body, dendrites (inputs), axon and synaptic terminals (outputs)

@ synaptic weight between dendrite and axon (inhibition or
excitation)

@ synapsis can be build (learning) or disconnected (forgetting)

@ neuron generates an electrical impulse if the activity of
dendrites is strong enough (information propagates)
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Artificial neural networks - basics

Artificial neural network

@ for more complex problems
@ typical application: classification, pattern recognition,
regression
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(event, P-wave, S-wave)

@ delay 1, 2, 4, and 8 samples
@ each neuron 18+(4x8)+1=51 inputs
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Data and method

Training

o supervised learning: adjusting weights w;; to get the best fit
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Data and method

Training

o supervised learning: adjusting weights w;; to get the best fit
with desired output

e we define the desired outputs for training data
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WEBNET data
Single Layer Recurrent Neural Network
Training of the SLRNN

Data and method

Training data

@ earthquake swarm 2008 (events-positive examples) and year
2010 (disturbances-negative examples)

o events: different magnitudes, locations, focal mechanisms

o disturbances: quarry blasts, regional or teleseismic events,
wind, storms
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Training results

Sensitivity and specificity

@ sensitivity (true positive rate TPR) - TPR=% =identified
events / all events

e specificity (true negative rate TNR) - TNR=$}F\’H} =rejected

disturbances / all disturbances

@ ROC (Receiver operation characteristic) - a relation between
the sensitivity and the specificity
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ROC diagram

individual training
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Training results

False detection

@ blind test on data from 2011, single station detection only
o false detections are often weak events

@ but many detections could not be verified
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Training results

Undetected events - examples
events M; = 2,3 and M; =2,2 hidden in the coda of M; =3,8
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Training results

Undetected events - examples
undetected event M; = —0,3 on station with high noise
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ng results

Undetected events - examples

missing detection of event M; = 0,2 on station with low P- and S-wave amplitudes
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Training results

Training results

@ SLRNN architecture is suitable for local event detection
@ individual training must not be better than joint training

@ for a good reliability the data throughout the network must be
combined

e reject false detections
o eliminate undetected events
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Reykjanet network

@ southwest Iceland, Reykjanes peninsula
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Application to Reykjanet

Reykjanet network

@ southwest Iceland, Reykjanes peninsula
@ 15 off-line broadband stations

@ network configuration, number of stations, swarm activity -
similar to WB
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Neural network

@ the best network of joint training for WEBNET
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Application to Reykjanet

Neural network

@ the best network of joint training for WEBNET
@ coincidence implemented

@ detection on at least 6 stations in a time window (0,8s)
required to define an EVENT
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Selected data: 4 swarms
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Catalogs

@ SIL - IMO catalog - manually revised automatic locations
Icelandic network

o Antelope - automatic catalog by Antelope from Reykjanes
data (B. Rozek)
@ PePiN - automatic locations by PePiN (T. Fischer)

@ ANN - event detections (no locations) using SLRNN trained
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Application to Reykjanet

Catalogs

@ SIL - IMO catalog - manually revised automatic locations
Icelandic network

o Antelope - automatic catalog by Antelope from Reykjanes
data (B. Rozek)
@ PePiN - automatic locations by PePiN (T. Fischer)

@ ANN - event detections (no locations) using SLRNN trained
for WEBNET

@ maximum magnitude M; =23

J. Doubravova and J. Horalek Neural network-based seismic event detector:



Application to Reykjanet

Number of events
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Comparison of individual events - March 2015
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@ Pepin and SIL sorted by the magnitude
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Comparison of individual events - March 2015
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@ Pepin and SIL sorted by the magnitude

o Antelope without magnitudes, sorted in time
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Motivation

Artificial neural networks - basics
Data and method

Training results

Application to Reykjanet
Conclusion

Smallest events
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Conclusion

Conclusion

@ SLRNN is fast and efficient algorithm for event detection

@ in case of consistent readings of P and S phases - individual
training performs better

e for missing readings, joint training is helpful

@ station coincidence solved both problems; undetected events
and false alarm

@ network trained for West Bohemia works very well for
Reykjanes
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Conclusion

Thank you for your attention !
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