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Motivation

@ continual data produced by dense seismic networks must be
reduced

@ detection of seismic events should:

e minimize false detections
o detect also weak events

@ neural networks can extract useful information, forward
problem is solved fast
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Artificial neural networks
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Artificial neural networks

Artificial neural network

@ neurons interconnected into networks to solve complex
problems
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Artificial neural networks

Artificial neural network

@ neurons interconnected into networks to solve complex
problems

e typical tasks: classification, pattern recognition, regression
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WEBNET
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SLRNN and training

Outline

© SLRNN and training

@ Single Layer Recurrent Neural Network
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.. WEBNET
SLRNN and training Single Layer Recurrent Neural Network

SLRNN training

Training

e supervised learning: searching w;; to fit required outputs for
training set

@ cost function minimization by Back Propagation Through
Time (gradient based method, back propagation of error
modification for recurrent networks)
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SLRNN and training

@ seismic swarm 2008 (events) and calm year 2010
(disturbances) WEBNET (West Bohemia)

@ events of various magnitudes, locations, mechanisms...

e disturbances of different nature -blasts, regional and
teleseismic ev., wind, stroms...

e training set divided (randomly)

e actual training data (80%)
o validation data (20%)
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WEBNET
Single Layer Recurrent Neural Network
SLRNN training

SLRNN and training

Training and overtraining

@ training continues until the validation set error decreases

@ cost function strongly nelinear! = more attempts from
randomly selected starting point

Error

validation

training

Time
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False detections
Results Undetected events

False detections 7

@ tested on swarm 2011, single station detection
@ many false detections

@ many events => small events without manual reading
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Undetected events
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Undetected events
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Undetected events
disturbances on KAC

Results

False detections
Undetected events
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False detections
Results Undetected events

How to solve it?

e we have high number of false detections / or very weak events
- too much events to process
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False detections
Results Undetected events

How to solve it?

e we have high number of false detections / or very weak events
- too much events to process

o few undetected events - really unacceptable
e => WE MUST USE COINCIDENCE IN THE NETWORK
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Coincidence

@ when a human processes waveforms, he takes into account all
the stations at once
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Application to Webnet
Application to Reykjanet
Application

Coincidence

@ when a human processes waveforms, he takes into account all
the stations at once

@ let the machine see detection outputs of the stations at once

o for each detection we look for sufficient number of detections
on other stations in certain time window
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Application to Webnet
Application to Reykjanet

Application

Coincidence 4 vs. 6
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Application to Webnet
Application to Reykjanet
Application

Concidence 4 vs. 6

@ six stations seems to be enough for reasonable minimum
magnitude
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Application to Webnet
Application to Reykjanet
Application

Concidence 4 vs. 6

@ six stations seems to be enough for reasonable minimum
magnitude

@ time window to search for coincidence was 0.8s
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@ Application
o Application to Webnet
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Appli on to Webnet

Application to Reykjanet
Application

Webnet

@ even there is a good detection and location provided by
PEPIN, there are some limitations

12.50
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Application to Webnet
Application to Reykjanet
Application

Webnet

@ even there is a good detection and location provided by
PEPIN, there are some limitations

@ especially events outside the NK focal zone could be missing

12.50

Legend
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Application

@ Application

@ Application to Reykjanet
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Application to Webnet
Application to Reykjanet
Application

Reykjanet network

@ south-west Iceland, Reykjanes peninsula
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Application to Webnet
Application to Reykjanet
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Application to Webnet
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Reykjanet network

@ south-west Iceland, Reykjanes peninsula

o 15 off-line stations

@ size of the network, number of stations, earthquake swarm

activity - similar to WB
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Neural network

o the best SLRNN network trained for WEBNET
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Catalogs

@ SIL - IMO catalog - manually revised automatic locations from
Icelandic regional network

@ Antelope - automatic catalog by Antelope from Reykjanet
stations (B. Razek)

@ PePiN - automatic locations from PePiN (T. Fischer)
@ ANN - detection (no location)

@ max. magnitude M; =23
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Porovnani jednotlivych jevi - brezen 2015
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@ Pepin and SIL sorted by magnitude
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Porovnani jednotlivych jevi - brezen 2015
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@ Pepin and SIL sorted by magnitude

@ Antelope sorted in time
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o further processing will reveal weak events as they can’t be
successfully localized
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Application to Webnet
Application to Reykjanet
Application

Conclusion
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SLRNN detector is fast and effective
coincidence within a network solves undetected events
coincidence reduces reasonably number of false detections

further processing will reveal weak events as they can’t be
successfully localized

the neural network trained for West Bohemia works well for
Reykjanet
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Thank you for your attention !
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